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Abstract

In this paper, we present a weighted essentially non-oscillatory (WENO) scheme for dispersive equations which may
enerate physical high-frequency oscillation in the non-smooth interface. The third derivative term is approximated directly by
conservative flux difference. A finite-difference WENO scheme of fifth-order is constructed for the discretization of spatial

ifferentiation. The wave behavior of linear and nonlinear dispersion equations is simulated by using the proposed scheme
n space direction and the third-order TVD Runge–Kutta method in the time direction. Numerical examples demonstrate the
ccuracy and good performance of the proposed scheme.
2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

eserved.

eywords: Dispersive equation; High-frequency oscillation; WENO scheme; TVD Runge–Kutta method

1. Introduction

Weighted essentially non-oscillatory (WENO) schemes are generally used to approximate hyperbolic conserva-
ion laws and the convection terms in convection-dominated partial differential equations (PDEs). After the first
ntroduction of the third-order accurate finite volume WENO scheme in 1994 by Liu, Osher, and Chan [14] in
ne space dimension, a general framework for designing arbitrary order accurate finite difference WENO schemes
as provided by Jiang and Shu [11] in 1996. Various types of highly effective conservative finite volume and

onservative finite difference WENO schemes were further developed to solve hyperbolic conservation laws since
hen by many researchers [4,7,8,12,15,24,25].

Since the last decade, researchers have also paid attention to the discretization of the second derivative by the
ENO method. Consequently, the finite difference WENO technique was presented originally for the nonlinear

egenerate parabolic equations which may contain discontinuous solutions in [16]. A new finite difference WENO
rocedure was given by using optimum polynomial in the stencil in [2]. Both explicit and implicit finite volume
ENO schemes were developed on non-uniform computational meshes in [3]. An efficient sixth-order finite

ifference WENO scheme was obtained with a new type of nonlinear weight by Rathan [20]. High order finite
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difference multi-resolution WENO method for the second derivative was constructed in [10]. A six-order finite
difference WENO method was constructed based on Legendre orthogonal monic polynomial in [1].

In this paper, we design a direct WENO scheme for dispersive equations in which the third derivative is included.
he solution of dispersive equations may have smooth, high-frequency oscillation or shock wave behavior, depended
n the non-linearity and smoothness of the function. Our main focus in this paper is the prototype equation of the
orm in the following:

ut + f (u)x + g(u)xxx = 0. (1.1)

For such type of dispersion-dominated equations, we here describe the Rosenau–Hyman equation, which also
alled K (n, m) equation: ut + (un)x + (um)xxx = 0, specifically. For certain values of n and m, the Rosenau–Hyman
quation has compactly supported solitary wave solutions. These structures, the so-called compactons, have several
hings in common with soliton solutions of the Korteweg–de Vries (KdV) equation. For example, a single compacton

oves with a velocity that is proportional to its amplitude. Several compactons with different velocities move and
ollide, and experience nonlinear interactions, resulting in phase shifts. In addition, one general initial data can be
ecomposed into a series of compactons. The compacton is continuous at the endpoints of its compact support, but
he first derivative of the compacton at the endpoints is discontinuous. Physical oscillations occur near these points
nd become more pronounced as the degree of nonlinearity increases.

The numerical solution of the Rosenau–Hyman equation is a challenging problem due to the co-existence of
ispersion effect and nonlinearity. The widely used numerical method is the pseudo-spectral method in space [5,21].
hese methods require the use of high-pass filter for artificial dissipation (hyperviscosity), and also retain the
ositiveness of the solution, but the sign may change after the compacton collision. The finite difference method
ith Padé approximation [19], the local discontinuous Galerkin method [13], the second-order finite difference
ethod [9] and the line method [22] based on adaptive mesh refinement have also been successfully applied.
The dispersive wave Eq. (1.1) has features that are similar to those of hyperbolic conservation law, such as the

ossible existence of sharp fronts and the finite speed of propagation of wavefronts. Therefore, it is reasonable to
eneralize the numerical techniques for solving hyperbolic conservation laws, such as the WENO technique, to
olve (1.1). This would involve a careful adaptation of the WENO procedure to ensure the conservation, accuracy,
nd non-oscillatory performance. In this paper, the direct WENO scheme for the third derivative is introduced in
etail. In Section 2, we present the high order direct WENO approximation procedure, also the specific description
nd analysis of fifth-order WENO approximation. In Section 3, the numerical method in the time direction and
orresponding CFL restriction is analyzed. The accuracy and non-oscillatory performance of the fifth-order direct

ENO scheme for the third derivative are provided by numerical examples in Section 4. In Section 5, we give
rief concluding remarks.

. Direct finite difference WENO scheme for dispersive equations

We derive a direct finite difference WENO scheme to the third derivative in conservation form. Assume the
niform mesh is distributed as follows:

x ∈ [xl , xr ], x j = xl + ( j − 1)∆x, j = 1 : N , x1 = xl , xN = xr ,

I j = [x j− 1
2
, x j+ 1

2
], x j+ 1

2
=

x j+1 + x j

2
.

(2.1)

where ∆x is the spatial step size. u j is defined as a nodal point value u(x j , t).
We are constructing the following conservative finite difference scheme for (1.1) of the form:

du j

dt
= −

F̂ j+ 1
2

− F̂ j− 1
2

∆x
−

Ĝ j+ 1
2

− Ĝ j− 1
2

∆x
. (2.2)

where F̂ and Ĝ are the numerical flux for convection and dispersion, respectively. For the convection flux, we
require it is consistent with the physical flux F̂(u, . . . , u) = f (u), also is Lipschitz continuous with respect to all
its arguments.

For the treatment of the convection term is a well researched topic in conservation laws, the readers can refer
to [11] for the detailed construction procedure. At the end of this section, we give a brief (Remark 3) for the specific
calculation method of the convection term in practice.
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We will focus on the dispersion term and present a kth order accurate conservative finite difference scheme as:

Ĝ j+ 1
2

− Ĝ j− 1
2

∆x
≈ g(u)xxx |x=x j + O(∆xk). (2.3)

where Ĝ j+ 1
2

is a numerical dispersion flux at the cell boundary x j+ 1
2
.

We define function p(x) implicitly, such that:

g(u) =
1

∆x3

∫ x+
∆x

2

x−
∆x

2

∫ η+
∆x

2

η−
∆x

2

∫ ξ+
∆x

2

ξ−
∆x

2

p(θ )dθdξdη, (2.4)

then by triple derivation, we have

g(u)xxx =
p(x +

3
2∆x) − 3p(x +

1
2∆x) + 3p(x −

1
2∆x) − p(x −

3
2∆x)

∆x3 . (2.5)

We define function G(x), such that

G(x) =
p(x + ∆x) − 2p(x) + p(x − ∆x)

∆x2 , (2.6)

then we have

g(u)xxx |x=x j =

G(x j+ 1
2
) − G(x j− 1

2
)

∆x
. (2.7)

If we have numerical flux Ĝ j+ 1
2

which is an approximation to G(x j+ 1
2
) up to kth order, then we have Eq. (2.3).

For stability, it is similar to the reconstruction procedure for numerical fluxes for convection terms, we split g(u)
into two parts, that is g(u) = g+(u) + g−(u) with ∂g+(u)

∂u ≥ 0 and ∂g−(u)
∂u ≤ 0, and G+(x) and G−(x) are defined by

2.6) according to g+(u) and g−(u), respectively. We would like to reconstruct numerical fluxes Ĝ+

j+ 1
2

and Ĝ−

j+ 1
2

to approximate G+(x j+ 1
2
) and G−(x j+ 1

2
) up to k order, respectively. Finally, we define numerical fluxes Ĝ j+ 1

2
as:

Ĝ j+ 1
2

= Ĝ+

j+ 1
2

+ Ĝ−

j+ 1
2
,

and Ĝ j+ 1
2

is an approximation to G(x j+ 1
2
) up to k order.

Now we would like to describe the reconstruction procedure for Ĝ+

j+ 1
2
, and procedure for Ĝ−

j+ 1
2

is mirror
symmetric respect to x j+ 1

2
.

Step 1: We choose a big stencil, S = [x j−r , . . . , x j+r+2], resulting in a scheme with order of accuracy k = 2r +1.
n this stencil, a polynomial ρ(x) of degree 2r + 2 based on node information can be obtained, which is used to
pproximate p(x) and satisfies:

1
∆x3

∫ xm+
∆x

2

xm−
∆x

2

∫ η+
∆x

2

η−
∆x

2

∫ ξ+
∆x

2

ξ−
∆x

2

ρ(θ )dθdξdη = g+

m , m = j − r, . . . , j + r + 2. (2.8)

Now we can obtain polynomial approximation h(x) of G(x) by (2.6). If the fifth-order approximation is taken
nto specification, which in the case of r = 2, the explicit polynomial expression h(x) of degree at most four in
his stencil:

h(x) =
1

∆x2

[ 1
1920

(
−4725g+

j + 2140g+

j+1 + 315g+

j+2 − 222g+

j+3 + 37g+

j+4 + 2658g+

j−1 − 203g+

j−2

)
+ 9800

(
g+

j −
328
245

g+

j+1 +
199
245

g+

j+2 −
8
35

g+

j+3 +
1

35
g+

j+4 −
64

245
g+

j−1 −
3

245
g+

j−2

)
ξ

+ 2760
(

g+

j +
4

69
g+

j+1 −
17
23

g+

j+2 +
10
23

g+

j+3 −
5

69
g+

j+4 −
22
23

g+

j−1 +
19
69

g+

j−2

)
ξ 2

− 5600
(

g+

j −
8
7

g+

j+1 +
5
7

g+

j+2 −
8

35
g+

j+3 +
1
35

g+

j+4 −
16
35

g+

j−1 +
3

35
g+

j−2

)
ξ 3

+ 1200
(

g+
−

4
g+

+ g+
−

2
g+

+
1

g+
−

2
g+

+
1

g+

)
ξ 4

]
,

(2.9)
j 3 j+1 j+2 5 j+3 15 j+4 5 j−1 15 j−2
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where ξ =
x−x j
∆x . We choose consecutive small stencils Sl = [x j−r+l , . . . , x j+l+2] for l = 0, . . . , r , resulting in a

series of lower order schemes.
In small stencil Sl , the polynomial ρl(x) is satisfying:

1
∆x3

∫ xm+
∆x

2

xm−
∆x

2

∫ η+
∆x

2

η−
∆x

2

∫ ξ+
∆x

2

ξ−
∆x

2

ρl(θ )dθdξdη = g+

m , m = j − r + l, . . . , j + l + 2. (2.10)

When r = 2, we can find three second degree polynomial expression which are based on nodal point information
and satisfying the flux splinting:

h0(x) =
1

∆x2

[ (3
2

g+

j+1 −
1
8

g+

j+2 +
3
2

g+

j−1 −
1
8

g+

j−2 −
11
4

g+

j

)
−

(
g+

j+1 −
1
2

g+

j+2 − g+

j−1 +
1
2

g+

j−2

)
ξ

+ (3g+

j − 2g+

j+1 +
1
2

g+

j+2 − 2g+

j−1 +
1
2

g+

j−2)ξ 2
]
,

h1(x) =
1

∆x2

[ (7
8

g+

j−1 −
3
2

g+

j +
1
4

g+

j+1 +
1
2

g+

j+2 −
1
8

g+

j+3

)
+

(
5g+

j − 6g+

j+1 + 3g+

j+2 −
1
2

g+

j+3

−
3
2

g+

j−1

)
ξ −

(
2g+

j − 3g+

j+1 + 2g+

j+2 −
1
2

g+

j+3 −
1
2

g+

j−1

)
ξ 2

]
,

h2(x) =
1

∆x2

[ (23
8

g+

j −
17
2

g+

j+1 +
37
4

g+

j+2 −
9
2

g+

j+3 +
7
8

g+

j+4

)
−

( 5
2

g+

j − 9g+

j+1 + 12g+

j+2 − 7g+

j+3

+
3
2

g+

j+4

)
ξ +

(1
2

g+

j − 2g+

j+1 + 3g+

j+2 − 2g+

j+3 +
1
2

g+

j+4

)
ξ 2

]
.

(2.11)

Step 2: We find the constant linear weights dl , so that h(x) on the big stencil is a linear combination of hl(x)
on the small stencils with dl as the combination coefficients

h(x j+ 1
2
) =

r∑
l=0

dlhl(x j+ 1
2
). (2.12)

since by consistency
∑r

l=0 dl = 1.
For the fifth-order approximation with three small stencils, from (2.12), we could obtain the linear weights

d0 =
4
15

, d1 =
1
2
, d2 =

7
30

. (2.13)

Step 3: We define the smoothness function, intending to maintain the same high order accuracy for smooth
solutions and non-oscillatory performance near discontinuities of the scheme.

βl =

r∑
κ=1

∆x2κ−1
∫

I j

( dκ

dxκ
hl(x)

)2
dx . (2.14)

Its explicit expression for the case of r = 2 are:

+ (−3g+

j + g+

j+1 + 3g+

j−1 − g+

j−2)2
)

+(6g+

j − 4g+

j+1 + g+

j+2 − 4g+

j−1 + g+

j−2)2,

β1 =
1
3

(
(7g+

j − 9g+

j+1 + 5g+

j+2 − g+

j+3 − 2g+

j−1)2
+ (3g+

j − 3g+

j+1 + g+

j+2 − g+

j−1)2

+ (7g+

j − 9g+

j+1 + 5g+

j+2 − g+

j+3 − 2g+

j−1)(3g+

j − 3g+

j+1 + g+

j+2 − g+

j−1)
)

+ (4g+

j − 6g+

j+1 + 4g+

j+2 − g+

j+3 − g+

j−1)2,

β2 =
1
3

(
(−2g+

j + 7g+

j+1 − 9g+

j+2 + 5g+

j+3 − g+

j+4)2
+ (−3g+

j + 11g+

j+1 − 15g+

j+2 + 9g+

j+3 − 2g+

j+4)2

+ (−2g +

j+2 + 5g+

j+3 − g+

j+4)(−3g +

j+2 + 9g+

j+3 − 2g+

j+4)
)

+ + + + + 2

(2.15)+

j  +7  g+

j+1  −  9g +

j  +11  g+

j+1  −  15g

   

 
     

 
        

  β0  =  
1
3  

(  
(3g+

j  −  3g+

j+1  +  g  j+2  −  g
+

j−1)2  
+  (3gj  −  3g+  + +

j+1  +  g
+

j+2  −  g
+

j−1)(g+

j+1  −  3g  j  +  3g
j−1  −  g

+

j−2)
+ +
+ (g j − 4g j+1 + 6g j+2 − 4g j+3 + g j+4) .
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We expand the above smoothness indicators βl , l = 0, 1, 2 at grid point x j :

β0 =(g+

xxx )2∆x6
+

(13
12

(g+

xxxx )2
+

1
2

g+

xxx g+

xxxxx

)
∆x8

+

( 1
16

(g+

xxxxx )2
+

1
20

g+

xxx g+

xxxxxxx

+
13
36

g+

xxxx g+

xxxxxx

)
∆x10

+ O(∆x12),

β1 =(g+

xxx )2∆x6
+

(13
12

(g+

xxxx )2
−

1
2

g+

xxx g+

xxxxx

)
∆x8

+

(
−

1
2

g+

xxx g+

xxxxxx +
13
60

g+

xxxx g+

xxxxx

)
∆x9

+

(55
48

(g+

xxxxx )2
−

17
60

g+

xxx g+

xxxxxxx +
13
9

g+

xxxx g+

xxxxxx

)
∆x10

+ O(∆x)11,

β2 =(g+

xxx )2∆x6
+

(13
12

(g+

xxxx )2
−

7
2

g+

xxx g+

xxxxx

)
∆x8

+

(
−5g+

xxx g+

xxxxxx +
13
3

g+

xxxx g+

xxxxx

)
∆x9

+

(355
48

(g+

xxxxx )2
−

257
60

g+

xxx g+

xxxxxxx +
169
36

g+

xxxx g+

xxxxxx

)
∆x10

+ O(∆x11).

(2.16)

here the grid point subscript of all derivatives is ignored to avoid confusion. So we notice

if g+

xxx ̸= 0, then βl = D(1 + O(∆x2)) for l = 0, 1, 2.

if g+

xxx = 0, g+

xxxx ̸= 0, then βl = D(1 + O(∆x)) for l = 0, 1, 2.
(2.17)

In general, we have

βl = D(1 + O(∆x)). (2.18)

Step 4: We change the linear weights dl in (2.12) to nonlinear weights. We first consider the nonlinear weights
n [11]:

ω̃l =
dl

(ε + βl)2 , ωl =
ω̃l∑
ω̃l

. (2.19)

emark 1. By Taylor expansion, we notice in order to achieve the fifth-order accuracy for r = 2, l = 0, . . . , r in
mooth region, it should at least satisfy ωl − dl = O(∆x2).

However, if the nonlinear weights (2.19) are used, we can only achieve

ωl − dl = O(∆x), l = 0, . . . , r. (2.20)

ith above smoothness indicators.
In order to increase the accuracy of the nonlinear weights, we choice to use the mapped WENO nonlinear weights

ntroduced in [7]. Here the mapped weight function is defined:

Gl(ω) =
ω(dl + d2

l − 3dlω + ω2)
d2

l + ω(1 − 2dl)
, l = 0, . . . , r. (2.21)

This function is a non-decreasing monotone function with the following properties:

1. 0 ≤ Gl(ω) ≤ 1, Gl(0) = 0, Gl(1) = 1.

2. Gl(ω) ≈ 0 if ω ≈ 0, Gl(ω) ≈ 1 if ω ≈ 1.

3. Gl(dl) = G ′

l (dl) = G ′′

l (dl) = 0.

4. Gl(ω) = dl + O(∆x6) if ω = dl + O(∆x2).

(2.22)

The mapped nonlinear weights are then given by

ωM
l =

αM
l∑2
αM

, αM
l = Gl(ωl), l = 0, . . . , r. (2.23)
l=0 l
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Remark 2. By Taylor expansion of Gl(ωl) for dl and with the condition (2.20), we have αM
l = dl + O(∆x3). Finally,

e obtain the expected order of accuracy ωM
l = dl + O(∆x3), l = 0, . . . , r .

Step 5: The final reconstruction of the semi-discrete finite difference mapped WENO flux is given by:

Ĝ+

j+ 1
2

=

r∑
l=0

ωM
l hl(x j+ 1

2
), l = 0, . . . , r. (2.24)

If we use the linear weights and linear combination on the right-hand side of (2.12), then we would get back
he linear scheme on the big stencil, which will be accurate for smooth solutions but will be oscillatory near
iscontinuities.

emark 3. In later numerical experiment, we use the above fifth order direct WENO scheme (r = 2) for dispersion
term in (1.1). For the first derivative, we use the fifth order finite difference WENO scheme with mapped nonlinear
weights as (2.21), (2.23) and its corresponding linear weights in [7], so that we can achieve the fifth order
computational accuracy in general.

Remark 4. The extension of present scheme to two-dimensional case, the spatial discretization procedure can be
proceeded by dimensional by dimensional manner.

3. Runge–Kutta time discretization

Up until now we have considered only spatial discretization. Eq. (1.1) is equivalent to the first order ODE system
after spatial discretization with finite difference WENO scheme [7] for first derivative and direct fifth-order WENO
scheme obtained above for third derivative as:

du
dt

= L(u). (3.1)

This ODE system can be discretized by a suitable ODE solver. We use the third order total variation diminishing
TVD) Runge–Kutta method [6] to solve (3.1), which is given by

u(1)
=un

+ ∆t L(un),

u(2)
=

3
4

un
+

1
4

u(1)
+

1
4
∆t L(u(1)),

un+1
=

1
3

un
+

2
3

u(2)
+

2
3
∆t L(u(2)).

(3.2)

This explicit time discretization has the advantage of maintaining nonlinear stability. However, it may not be
he most efficient solver because of the time step restriction ∆t = O(∆x3). Nevertheless, for dispersion-dominated

equations, this time discretization could still be a suitable choice.
In order to ensure numerical stability for dispersion term, the time step satisfying the Courant–Friedrich–Lewy

(C F L) stability condition must be carefully selected. To determine the C F L condition of the form ∆t = C F L ·∆x3,
e consider the fifth order finite difference scheme on big stencil and the third order TVD Runge–Kutta method

n time for the dispersion equation ut + uxxx = 0. Evaluate the numerical flux at x j+ 1
2

by (2.9):

h(x j+ 1
2
) = −

1
15

g+

j−2 +
21
40

g+

j−1 +
1
8

g+

j −
23
12

g+

j+1 +
7
4

g+

j+2 −
19
40

g+

j+3 +
7

120
g+

j+4. (3.3)

The numerical flux at x j− 1
2

also can be obtained by simply shift (3.3) by one point to the left. Inserting these
o (2.3) and applying the third order TVD Runge–Kutta method in time direction, we can deduce the amplification
221
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Table 4.1
Order of accuracy at T =

1
2 in x ∈ [−10, 10] for Example 2.

N L∞ order L1 order L2 order

80 2.4085e−02 4.0875e−03 6.7210e−03
160 1.0183e−03 4.5640 1.8039e−04 4.5020 2.9209e−04 4.5242
320 2.8075e−05 5.1807 5.2863e−06 5.0927 8.6104e−06 5.0842
640 8.4993e−07 5.0458 1.7414e−07 4.9239 2.7673e−07 4.9596

factor by Fourier transform:

Q(ζ, σ ) = 1 − σ
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(3.4)

where σ =
∆t
∆x3 . From the stability condition |Q(σ, ζ )| ≤ 1 for all ζ ∈ [−π, π], we obtain the C F L condition

0 < σ =
∆t
∆x3 ≤ 0.30480. (3.5)

4. Numerical tests

In the following examples, we present numerical results and analysis for some dispersion-type equations with
various initial conditions. Since the explicit third-order TVD Runge–Kutta method is applied for time direction, the

F L stability condition requires the step size on time direction as:

∆t ≤ min
( C F L · ∆x

5
3

max(| f ′(u)|)
,

C F L · ∆x3

max(|g′(u)|)

)
. (4.1)

For all numerical simulations in this paper, we take C F L = 0.3 as obtained by Fourier analysis for the linear
dispersion equation in the previous section.

Example 1. We compute the classical soliton solution of the KdV equation in nonlinear case:

ut − 3(u2)x + uxxx = 0, − 10 ≤ x ≤ 10. (4.2)

The exact solution is u(x, t) = −2sech2(x−4t). The accuracy order is measured with periodic boundary condition
and initial condition extracted from the exact solution. The numerical errors in terms of L1, L2 and L∞ norms and

fth-order convergency order at T = 1 in x ∈ [−10, 10] can be seen in Table 4.1.

xample 2. We compute the conservation law with zero dispersion limit

ut +

(u2

2

)
x
+ εuxxx = 0, (4.3)

with continuous initial condition
u(x, 0) = 2 + 0.5 sin(2πx), 0 ≤ x ≤ 2π
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Fig. 4.1. Numerical solution of KdV equation with T = 0.5 in x ∈ [0, 2π ] for Example 2.

nd discontinuous initial condition

u(x, 0) =

{
1 0.25 < x < 4,

0 else.

Considering this dispersive nonlinear KdV equation(ε → 0) with periodic boundary condition, dispersive shock
ave behavior is expected for small ε. In this example, we illustrate the capability of our code in resolving high-

requency wavelets for very small ε and produce continuous wavelets in the vicinity of the discontinuity. The
olution is simulated at T = 0.5 with ε = 10−4, 10−5, 10−6, respectively, and plotted in Fig. 4.1. For comparison,
he similar physical downstream oscillations of the continuous wavelets are captured in [15,18]. The results show
hat the solutions are noise-free particularly before and after the dispersive shock.

Consider above equation with discontinuous initial condition and inflow–outflow boundary condition, we can
bserve a left-propagating dispersion-shock wave in every discontinuous interface and the amplitude of the wave
ncreases through time. The evolution of a top-hat initial solution into a train of traveling waves can be observed
rom Fig. 4.2, which even with physical discontinuous initial data, the zero-dispersion limit solutions are not
iscontinuous, but evolve fine-scale continuous wavelets, eventually separating into solitary waves. The dispersion-
hock wave in discontinuous interface plotted with present scheme seems to be more accurate and elastic than the
nes plotted with [17,18] under the same mesh.

xample 3. In this example, we show the numerical simulations for the Ito-type coupled nonlinear problem{
ut − (3u2

+ v2)x − uxxx = 0,

vt − 2(uv)x = 0.
(4.4)

ith initial condition

u(x, 0) = cos(x), v(x, 0) = cos(x). (4.5)

nd Gaussian initial condition

u(x, 0) = exp(−x2), v(x, 0) = exp(−x2). (4.6)

ith periodic boundary condition.

Dispersive wave and shock-similarity wave profile can be observed for u and v, respectively, from Figs. 4.3 and

.4. These results are coincide with the ones obtained by Local discontinuous Galerkin method in [23].
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Fig. 4.2. Numerical solution of KdV equation with ε = 10−4 at T = 0, 0.01, 0.05, 0.1 in x ∈ [0, 5] for Example 2.

Fig. 4.3. Numerical solution of Ito’s equation with 200 cells at T = 0, 0.5, 1 in x ∈ [0, 2π ] with periodic boundary condition and initial
ondition (4.5) for Example 3.

xample 4. Considering the nonlinear dispersive case, we simulate the K (2, 2) equation

ut + (u2)x + (u2)xxx = 0 (4.7)

ith the canonical traveling wave solution

u(x, t) =

⎧⎨⎩ 4λ
3

[
cos

(
x−λt

4

)]2
, |x − λt | ≤ 2π,

0, Otherwise.
(4.8)

In order to measure the accuracy of the scheme without the interference of the non-smooth interfaces, take the
omputational domain [−2π, 2π ] with periodic boundary condition for the solution (4.8). The fifth-order accuracy

f the scheme is tested and listed in Table 4.2.
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Fig. 4.4. Numerical solution of Ito’s equation with 200 cells at T = 0, 1, 2 in x ∈ [−15, 15] with periodic boundary condition and initial
condition Eq. (4.6) for Example 3.

Table 4.2
Order of accuracy for K (2, 2) equation at T =

π
2 in computational domain x ∈ [−2π, 2π ] with periodic boundary condition for Example 4.

N L∞ order L1 order L2 order

40 2.3296e−05 1.0091e−05 1.2034e−05
80 1.7095e−07 7.0904 6.9898e−08 7.1736 8.0308e−08 7.2273
160 4.6023e−09 5.2150 2.0391e−09 5.0992 2.3109e−09 5.1190
320 1.2242e−10 5.2325 6.8360e−11 4.8986 7.6499e−11 4.9169

To observe compacton-splitting behavior of K (2, 2) equation, we take the initial data:

u0(x) =

{
4
3 cos2( x

8 ), x ∈ [−4π, 4π ],
0 otherwise.

(4.9)

The wave motion at T = 10, 25, 50 are simulated and displayed in Fig. 4.5 in domain [−5π, 25π ] with N = 600
ells. We can observe that the compactons split from one initial compacton as time evolves and move to the right.
t the same time, a small residue is developed at the left interface, similarly to the LDG scheme [13]. It can be
bserved that no Gibbs oscillations develop in the non-smooth interface (the edges of the compactons). The small
esidue, which seems to be a compacton–anti-compacton pair, appeared in the left side of the compacton-packet
eems to be a physical one, this also detected by the LDG scheme [13]. Our scheme can distinguish between
umerical oscillation and physical oscillation without any other special treatment.

xample 5. Considering the K (3, 3) equation

ut + (u3)x + (u3)xxx = 0. (4.10)

We compute the compacton-collision behavior of K (3, 3) equation with the initial data:

u(x, 0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
3 cos( x−10

3 ), |x − 10| ≤
3π
2 ,

3
2 cos( x−25

3 ), |x − 25| ≤
3π
2 ,√

3
2 cos( x−40

3 ), |x − 40| ≤
3π
2 ,

0 otherwise.

(4.11)

As can be seen in Fig. 4.6, three compactons with various speeds pass through with each other during nonlinear
nteraction while propagating to the right, and also maintain their coherent shapes after the collision. Despite the
225
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Fig. 4.5. Numerical solution of K (2, 2) equation with N = 600 at T = 10, 25, 50 in x ∈ [−5π, 25π ] for Example 4.

Fig. 4.6. Numerical solution of K (3, 3) with N = 600 at T = 10, 20, 30 in x ∈ [0, 30π ] for Example 5.

compactons emerge out intactly from the collision, a small residue is bounced back from the collision on the left.
Similar results are also can be found in [13]. These compactons are found to be not fully elastic as mentioned in [19],
and also obtained in the original compacton study [9]. The wavelets of the residue get even more clear along with
mesh-refinement. According to earlier-published compacton studies and numerical observation, we believe that this
phenomena is not numerically induced.

In order to observe the superiority of the direct WENO scheme over the same order finite difference scheme,
we also compare the results of the WENO scheme with linear weights (finite difference method in big stencil) and

WENO scheme with nonlinear weights in Fig. 4.7 for the compacton-collision case of K (3, 3) equation with initial
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t
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Fig. 4.7. Comparison of direct WENO scheme with linear weights and direct WENO scheme with nonlinear weights with N = 600 at
T = 10 in x ∈ [0, 30π ] for Example 5.

Table 4.3
Order of accuracy for linear dispersion equation at T = 1 in computational domain (0, 2π ) × (0, 2π ) with periodic boundary condition for
Example 6.

N L∞ order L1 order L2 order

10 8.4957e−03 5.1664e−03 5.9701e−03
20 2.0644e−04 5.3629 1.2972e−04 5.3157 1.4522e−04 5.3615
40 5.6188e−06 5.1993 3.5778e−06 5.1802 3.9742e−06 5.1914
80 1.7408e−07 5.0124 1.1080e−07 5.0130 1.2310e−07 5.0127

data (4.11) under the coarse mesh. Obviously, the WENO scheme with nonlinear weights has the advantages of
detecting this compacton residue while the WENO scheme with linear weights smoothes out completely.

Example 6. We consider two-dimensional linear dispersion equation:

ut + uxxx + u yyy = 0. (4.12)

The exact wave solution is of the form u(x, y, t) = sin(x + y +2t). We can see in Table 4.3 that the method gives
he fifth order of convergence with periodic boundary condition in domain (0, 2π ) × (0, 2π ). For two-dimensional
roblem, the computation is proceeded by dimension-by-dimension manner.

xample 7. Considering the compacton-splitting case of 2D-K (2, 2) equation:

ut + (u2)x + (u2)y + (u2)xxx + (u2)yyy = 0. (4.13)

with initial date:

u(x, y, 0) =

{
2
(
sech(x + λy − x0)

)2
, |x + λy − x0| ≤ π,

0, Otherwise.
(4.14)

here λ = 1, x0 = 6.

The numerical solutions of compacton-splitting case of K (2, 2) equation obtained at the time level T = 2, 4, 6, 10
with number of grid number Nx = Ny = 80 are shown in Fig. 4.8. A similar wave residue with one-dimensional

case still can be observed along with propagation.
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Fig. 4.8. Compacton-Splitting of K (2, 2) equation with Nx = Ny = 80 at T = 2, 4, 6, 10 in [−20, 20] × [−20, 20] for Example 7.

. Concluding remark

We derive high order accurate direct weighted essentially non-oscillatory (WENO) scheme for the third derivative
y direct approximation in this paper. Numerical tests are provided for the simulation of linear dispersion equation,
dV equation, Ito equation, K (2, 2) and K (3, 3) equation with various initial conditions. To our knowledge,
ispersion-type equations may have smooth, high-frequency oscillation, peakon, or shock wave behavior depending
n nonlinearity and smoothness. Here we observe the wave motion of some dispersion-type equations with smooth,
iscontinuous initial data obtained by our scheme at hand. Numerical results show that our present scheme is
ffective and has the advantages of high-order accuracy and non-oscillatory property. On the other hand, present
cheme imposes damping on physical oscillations, and we assume that this is due to the flux treatment of the
hird derivative of the direct WENO scheme since we do not know the exact or entropy wave velocity in theory.
issipation increases obviously with the increase of the nonlinearity degree on third derivative, and the current
ax–Friedrichs flux treatment is no longer sufficient. That is what we are going to focus on in the future.
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